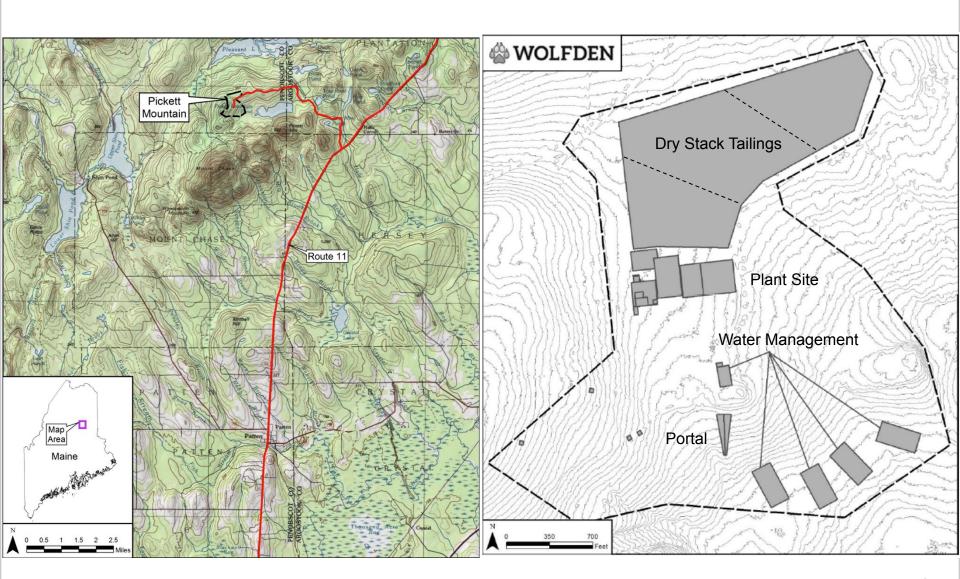


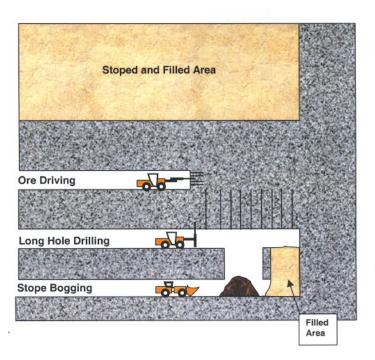
Project Location

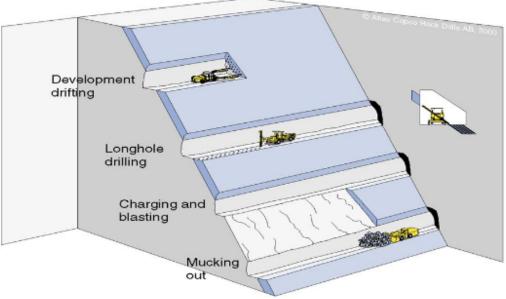


Project Location

Estimated Project Timeline

Annual Schedule Starting in 2020															
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Re-zoning															
Permitting															
Construction															
Operations															
Reclamation															


Assumptions


- Re-zoning approval approximately 1 year
- Baseline data collection to commence 2020
- Construction commences after approvals and project financing
- Pre production mine development during construction
- Reclamation of tailings cells during operations

Mining Method

- Mining Method Ramp Access, Long Hole Stoping
- Underground loaders and haulage trucks transport material to surface
- Waste rock hauled back underground to backfill mined out openings

Underground Mine Operations

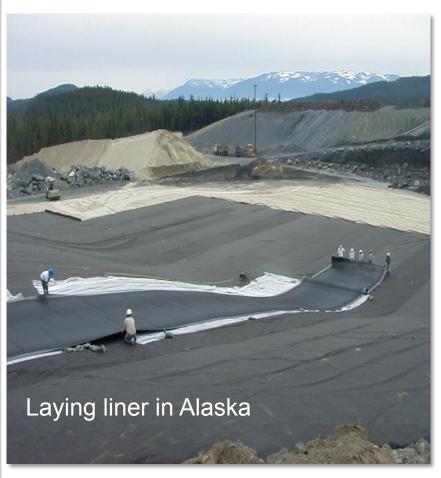
Mineral Processing Method – Concentrator

- Stage 1 Crushing and grinding of ore (mineralized rock) from underground to powder size material
- Stage 2 Flotation of rock powder into three separate concentrates of Copper, Lead and Zinc
- Stage 3 Tailings (rock powder of no value) from the flotation is filtered and moved to dry stack tailings pad
- Stage 4 The water extracted from metal concentrates and tailings is recirculated back to stage 2 for reuse
- Stage 5 Metal concentrates are shipped via transport truck to refinery or port

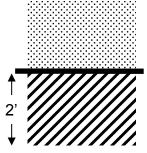
Concentrator Plant Site

Mineral Processing – Flotation Cells

Agitation pre-float



Copper attached to bubbles


Floatation cell

Dry Stack Tailings Design

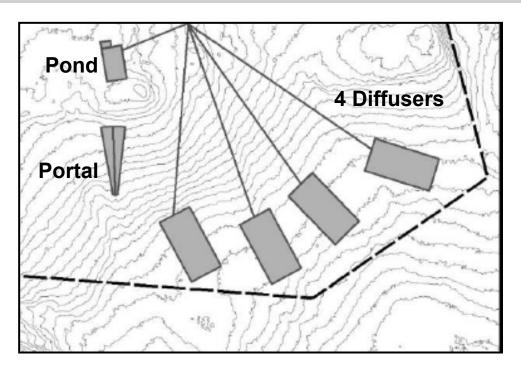
Tailings Liner Bed Example

Leachate collection layer

60 mm HPDE Geomembrane

10E-6 compacted till or clay

Greens Creek Dry Stack Tailings - Alaska

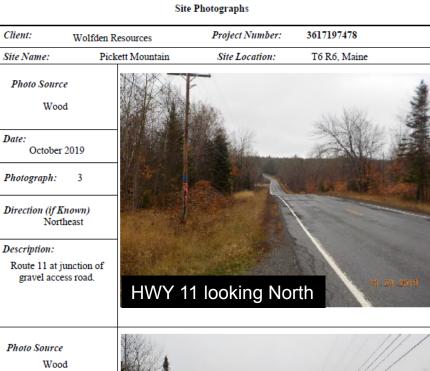

Dry Stack Tailings Benefits

- ✓ Legislated and proven method of safe tailings management
- ✓ Engineered liner at the base of tailings
- ✓ Capture and reuse process water and precipitation from tailings
- ✓ Staged construction continuous closure and reclamation with monitoring
- ✓ Engineered cover as final cap and closure of tailings
- ✓ No impact to groundwater or surface water

Clear Water Discharge

- Treated water stored in pond and tested prior to discharge to diffusers
- **Diffusers** Rock and Gravel beds (similar to septic field) to allow seepage back into groundwater with no open surface discharge
- Flexible Design Add more diffusers for increased discharge
- Daily monitoring pond, ground and surface waters

Clear Water Discharge – Halfmile Mine, NB


Final Closure and Reclamation

- Stage 1 Remove all infrastructure except water management system
- Stage 2 Waste rock and pad material placed underground
- Stage 3 Surface contouring and capping of final tailings cell
- Stage 4 Surface contouring and re-vegetation of site and tailings
- Stage 5 Continuous water treatment management and monitoring
- Stage 6 Removal of water treatment facility only upon clean water approvals
- Stage 7 Final closure of portal and any mine openings
- Stage 8 Re-zoning of the site back to non-industrial use

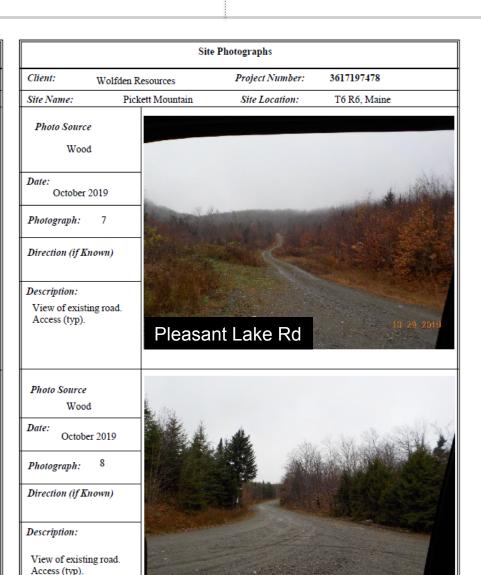
Current Road Access Conditions

Date:

Photograph:

Description:

Direction (if Known)


October 2019

Southwest

Route 11 at junction of

gravel access road.

Pickett Mt Rd

Current Property Conditions

- Typical Young Forest
- No year round population
- Limited Seasonal camps

- Manageable topography
- Avoid wetlands
- Designs flexible to limit impact

Current Site Conditions

Assessment of Air Quality - Dust

Dust Source	Mitigation Solutions			
Road Traffic	Water high traffic routes to suppress dust			
Plant - Crushing	Proven dust filters and vacuums systems			
	Water Sprays			
Dry Stack Tailings	Maintain a small footprint (Staged closure)			
	Maintain practical moisture content in tailings			

All of these will be considered in a detailed Engineering Study so as to limit any impact.

Assessment of Site Water Balance on Basin

Area	Size (acres)	Overburden Recharge (mgpa)	Bedrock Recharge (mgpa)
Total Drainage Sub-Basin	3330	2,143	113
North of Divide in Basin	2500	1,609	85
South of Divide in Basin	830	534	28
Developed Mine Area Footprint	49	(29)	(3)
Percentage Impact of Mine Area on Total	1%	1%	2%

The proposed mine area represents less than 2% of the total drainage basin that hosts the site. Capturing and treating all water to same quality as existing ground should result in close to net-zero impact on the basin drainage quantity and quality.

Assessment of Site Noise and Lighting

Noise Sources	Source (dB)	Property Boundary (dB)	Nearest Neighbour (dB)			
Ventilation Fan	110	40.5	31.4			
Haul Trucks	76	6.5	0			
Portal Blasting	94	24.5	15.4			
Rock Drill	84	14.5	5.4			

No year round population within several miles of the site. Seasonal use camps located greater than one mile.

Light Sources	Mitigation Solutions				
Site light poles	All on site yard and tailings lighting downward facing				
Building lights	All building lighting downward facing				
Vehicle lights	All vehicles lights will be below tree level and unseen				

Assessment of Environmental Conditions

Limited impacts to

- Forest Resources
- Wetland Resources
- Wildlife Resources/Habitats
- Plant Habitats
- Historical Sites
- Scenic Resources
- Recreational Resources

All of these will be considered in a detailed Engineering Study so as to limit or avoid any impact, preserve and restore to as close to nature as possible.

Assessment of Social & Infrastructure Items

Local Traffic

✓ No impact to traffic – 4 to 10 haul trucks per day plus small vehicles

Local Schools

✓ No impact – potentially +10 students that is within annual variance

Local Emergency Services

✓ No impact – Use of onsite emergency services, minimal external support

Local Solid Waste Management

✓ No impact – Plan for use of contracted waste management

Local Power Supply

✓ No impact – Company to Install additional power via power supplier

Beneficial Project Attributes and Opportunities

Sources of Positive Beneficial Impacts:

- Steady State Employment for ± 60 employees
- Operation Supplies
- Contracted Operational Services
- Supply of Fuels, Energy and Consumables

Estimated Financial Benefits to the:

Communities \$165 M

Counties \$67 M

• State of Maine \$246 M

Total \$478 M